Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Negl Trop Dis ; 15(5): e0009414, 2021 05.
Article in English | MEDLINE | ID: covidwho-1238752

ABSTRACT

In Latin America, there has been tremendous progress towards eliminating canine rabies. Major components of rabies elimination programs leading to these successes have been constant and regular surveillance for rabid dogs and uninterrupted yearly mass dog vaccination campaigns. Unfortunately, vital measures to control COVID-19 have had the negative trade-off of jeopardizing these rabies elimination and prevention activities. We aimed to assess the effect of interrupting canine rabies surveillance and mass dog vaccination campaigns on rabies trends. We built a deterministic compartment model of dog rabies dynamics to create a conceptual framework for how different disruptions may affect rabies virus transmission. We parameterized the model for conditions found in Arequipa, Peru, a city with active rabies virus transmission. We examined our results over a range of plausible values for R0 (1.36-2.0). Also, we prospectively evaluated surveillance data during the pandemic to detect temporal changes. Our model suggests that a decrease in canine vaccination coverage as well as decreased surveillance could lead to a sharp rise in canine rabies within months. These results were consistent over all plausible values of R0. Surveillance data from late 2020 and early 2021 confirms that in Arequipa, Peru, rabies cases are on an increasing trajectory. The rising rabies trends in Arequipa, if indicative to the region as whole, suggest that the achievements made in Latin America towards the elimination of dog-mediated human rabies may be in jeopardy.


Subject(s)
COVID-19/epidemiology , Dog Diseases/epidemiology , Mass Vaccination/veterinary , Pandemics , Rabies virus/immunology , Rabies/epidemiology , SARS-CoV-2/physiology , Animals , COVID-19/virology , Disease Eradication , Dog Diseases/prevention & control , Dog Diseases/virology , Dogs , Humans , Latin America/epidemiology , Peru/epidemiology , Rabies/prevention & control , Rabies/virology , Rabies Vaccines/administration & dosage , Vaccination Coverage
2.
Nat Commun ; 12(1): 2274, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1189224

ABSTRACT

Massive unemployment during the COVID-19 pandemic could result in an eviction crisis in US cities. Here we model the effect of evictions on SARS-CoV-2 epidemics, simulating viral transmission within and among households in a theoretical metropolitan area. We recreate a range of urban epidemic trajectories and project the course of the epidemic under two counterfactual scenarios, one in which a strict moratorium on evictions is in place and enforced, and another in which evictions are allowed to resume at baseline or increased rates. We find, across scenarios, that evictions lead to significant increases in infections. Applying our model to Philadelphia using locally-specific parameters shows that the increase is especially profound in models that consider realistically heterogenous cities in which both evictions and contacts occur more frequently in poorer neighborhoods. Our results provide a basis to assess eviction moratoria and show that policies to stem evictions are a warranted and important component of COVID-19 control.


Subject(s)
COVID-19/transmission , Communicable Disease Control/methods , Housing/legislation & jurisprudence , Pandemics/prevention & control , Policy , COVID-19/economics , COVID-19/epidemiology , COVID-19/virology , Cities/legislation & jurisprudence , Cities/statistics & numerical data , Communicable Disease Control/legislation & jurisprudence , Computer Simulation , Housing/economics , Humans , Models, Statistical , Philadelphia/epidemiology , SARS-CoV-2/pathogenicity , Unemployment/statistics & numerical data , Urban Population/statistics & numerical data
3.
PLoS Comput Biol ; 17(2): e1008684, 2021 02.
Article in English | MEDLINE | ID: covidwho-1061096

ABSTRACT

In the absence of pharmaceutical interventions, social distancing is being used worldwide to curb the spread of COVID-19. The impact of these measures has been inconsistent, with some regions rapidly nearing disease elimination and others seeing delayed peaks or nearly flat epidemic curves. Here we build a stochastic epidemic model to examine the effects of COVID-19 clinical progression and transmission network structure on the outcomes of social distancing interventions. Our simulations show that long delays between the adoption of control measures and observed declines in cases, hospitalizations, and deaths occur in many scenarios. We find that the strength of within-household transmission is a critical determinant of success, governing the timing and size of the epidemic peak, the rate of decline, individual risks of infection, and the success of partial relaxation measures. The structure of residual external connections, driven by workforce participation and essential businesses, interacts to determine outcomes. We suggest limited conditions under which the formation of household "bubbles" can be safe. These findings can improve future predictions of the timescale and efficacy of interventions needed to control second waves of COVID-19 as well as other similar outbreaks, and highlight the need for better quantification and control of household transmission.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Communicable Disease Control/methods , Physical Distancing , Algorithms , COVID-19/epidemiology , China/epidemiology , Cluster Analysis , Computer Simulation , Disease Progression , Epidemics , Hospitalization , Humans , Models, Theoretical , Residence Characteristics
4.
Ann Intern Med ; 173(1): 21-28, 2020 07 07.
Article in English | MEDLINE | ID: covidwho-38773

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic challenges hospital leaders to make time-sensitive, critical decisions about clinical operations and resource allocations. OBJECTIVE: To estimate the timing of surges in clinical demand and the best- and worst-case scenarios of local COVID-19-induced strain on hospital capacity, and thus inform clinical operations and staffing demands and identify when hospital capacity would be saturated. DESIGN: Monte Carlo simulation instantiation of a susceptible, infected, removed (SIR) model with a 1-day cycle. SETTING: 3 hospitals in an academic health system. PATIENTS: All people living in the greater Philadelphia region. MEASUREMENTS: The COVID-19 Hospital Impact Model (CHIME) (http://penn-chime.phl.io) SIR model was used to estimate the time from 23 March 2020 until hospital capacity would probably be exceeded, and the intensity of the surge, including for intensive care unit (ICU) beds and ventilators. RESULTS: Using patients with COVID-19 alone, CHIME estimated that it would be 31 to 53 days before demand exceeds existing hospital capacity. In best- and worst-case scenarios of surges in the number of patients with COVID-19, the needed total capacity for hospital beds would reach 3131 to 12 650 across the 3 hospitals, including 338 to 1608 ICU beds and 118 to 599 ventilators. LIMITATIONS: Model parameters were taken directly or derived from published data across heterogeneous populations and practice environments and from the health system's historical data. CHIME does not incorporate more transition states to model infection severity, social networks to model transmission dynamics, or geographic information to account for spatial patterns of human interaction. CONCLUSION: Publicly available and designed for hospital operations leaders, this modeling tool can inform preparations for capacity strain during the early days of a pandemic. PRIMARY FUNDING SOURCE: University of Pennsylvania Health System and the Palliative and Advanced Illness Research Center.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Decision Making , Intensive Care Units/organization & administration , Models, Organizational , Pandemics , Pneumonia, Viral/therapy , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL